Los administradores de TransicionEstructural no se responsabilizan de las opiniones vertidas por los usuarios del foro. Cada usuario asume la responsabilidad de los comentarios publicados.
0 Usuarios y 1 Visitante están viendo este tema.
jajajajajajaCitarHan pedido a ChatGPT el número del Gordo del Sorteo de Lotería de Navidad 2023, y se ha agotado en minutos en Elche https://www.genbeta.com/actualidad/han-pedido-a-chatgpt-numero-gordo-sorteo-loteria-navidad-2023-se-ha-agotado-minutos-elcheEsto demuestra una vez más la confianza que la gente deposita en ChatGPT, y en este caso en GPT-4. Y es que un número que se ha obtenido a partir de la serie histórica y que en el fondo tiene una probabilidad similar al resto de números al no seguir el sorteo un patrón estadístico que pueda anticiparnos cuál va a salir en la siguiente tirada del gran bombo.
Han pedido a ChatGPT el número del Gordo del Sorteo de Lotería de Navidad 2023, y se ha agotado en minutos en Elche https://www.genbeta.com/actualidad/han-pedido-a-chatgpt-numero-gordo-sorteo-loteria-navidad-2023-se-ha-agotado-minutos-elcheEsto demuestra una vez más la confianza que la gente deposita en ChatGPT, y en este caso en GPT-4. Y es que un número que se ha obtenido a partir de la serie histórica y que en el fondo tiene una probabilidad similar al resto de números al no seguir el sorteo un patrón estadístico que pueda anticiparnos cuál va a salir en la siguiente tirada del gran bombo.
Cita de: Cadavre Exquis en Noviembre 15, 2023, 08:02:09 amCita de: Saturio en Noviembre 15, 2023, 01:09:18 amEstas cosas me preocupan.A ver si me explico. Me alegro de que tengamos formas mejores y más eficientes de predecir el tiempo.El problema es que, hasta donde yo entiendo (y si no es así, los que saben más que me corrijan), realmente la IA no es inteligente, puesto que si lo fuera nos podría contar cómo ha llegado al resultado. Y entiendo que no es así, la IA no nos puede explicar por qué va a llover mañana. Por lo tanto ni la IA ni nosotros sabemos por qué pasan las cosas o cómo hemos llegado a ese resultado.No sé si ven el problema que yo veo.Ese es el quid de la cuestión con todo el tema de las IAs (aunque, en mi opinión, denominar IAs a modelos como el de GraphCast no ayudan precisamente a centrar el debate).¿Es cierto que no sabemos con exactitud como la red neuronal realiza la predicción? Evidentemente.¿Debemos por ello descartar el uso de este tipo de modelos? Yo creo que no.Saludos.No digo que los descartemos pero veo algo que no sé si llamar siniestro.O igual son tontadas mías, claro.Imaginemos que mañana una IA (o lo que sea) nos dice cómo curar el cáncer. Le damos los datos de un enfermo y nos da el tratamiento. Y va y se cura. Pero no sabemos por qué. Y la IA (o lo que sea) tampoco lo sabe.Imaginemos que cada vez podemos resolver más y más problemas prácticos. Determinar si nos va a impactar un meteorito y dónde y a qué velocidad, si un volcán va a entrar en erupción o si habrá un terremoto, dónde y de qué escala. O yo qué sé, determinar por dónde pasarán los bancos de bacalao para pescarlos más eficientemente.Pero no sabemos por qué.Y no estoy hablado de posibles errores, porque al final se detectarían. Una vez leí una cosa curiosa sobre una IA que diagnosticaba tuberculosis. Y lo hacía mal. Entre los datos que se le presentaban (posiblemente sin intención ninguna) estaba el modelo de la máquina que había hecho las radiografías. Como la tuberculosis era más frecuente antiguamente, en los datos que se le presentaron había muchísimos positivos hechos en máquinas antiguas (quizás también había más positivos que venían de zonas del mundo donde la tuberculosis es más frecuente y donde hay maquinas más viejas). El resultado es que si te hacías una radiografía en una máquina antigua había muchas posibilidades de que la IA dijese que tenías tuberculosis mientras que un médico viendo la radiografía diría que estás perfectamente sano.Vieron que la IA se equivocaba, lo que pasa es que hubo que hacer un trabajo detectivesco para saber por qué.Pero insisto, ese no es el problema, si la IA se equivoca se va a detectar y se va a descartar.Lo que veo rarísimo es que lleguemos a conclusiones sin que nadie sepa la razón.
Cita de: Saturio en Noviembre 15, 2023, 01:09:18 amEstas cosas me preocupan.A ver si me explico. Me alegro de que tengamos formas mejores y más eficientes de predecir el tiempo.El problema es que, hasta donde yo entiendo (y si no es así, los que saben más que me corrijan), realmente la IA no es inteligente, puesto que si lo fuera nos podría contar cómo ha llegado al resultado. Y entiendo que no es así, la IA no nos puede explicar por qué va a llover mañana. Por lo tanto ni la IA ni nosotros sabemos por qué pasan las cosas o cómo hemos llegado a ese resultado.No sé si ven el problema que yo veo.Ese es el quid de la cuestión con todo el tema de las IAs (aunque, en mi opinión, denominar IAs a modelos como el de GraphCast no ayudan precisamente a centrar el debate).¿Es cierto que no sabemos con exactitud como la red neuronal realiza la predicción? Evidentemente.¿Debemos por ello descartar el uso de este tipo de modelos? Yo creo que no.Saludos.
Estas cosas me preocupan.A ver si me explico. Me alegro de que tengamos formas mejores y más eficientes de predecir el tiempo.El problema es que, hasta donde yo entiendo (y si no es así, los que saben más que me corrijan), realmente la IA no es inteligente, puesto que si lo fuera nos podría contar cómo ha llegado al resultado. Y entiendo que no es así, la IA no nos puede explicar por qué va a llover mañana. Por lo tanto ni la IA ni nosotros sabemos por qué pasan las cosas o cómo hemos llegado a ese resultado.No sé si ven el problema que yo veo.
Unauthorized “David Attenborough” AI clone narrates developer’s life, goes viral"We observe the sophisticated Homo sapiens engaging in the ritual of hydration."Benj Edwards · 2023.11.16Screen capture from a demo video of an AI-generated unauthorized David Attenborough voice narrating a developer's video feed. | Charlie HoltzOn Wednesday, Replicate developer Charlie Holtz combined GPT-4 Vision (commonly called GPT-4V) and ElevenLabs voice cloning technology to create an unauthorized AI version of the famous naturalist David Attenborough narrating Holtz's every move on camera. As of Thursday afternoon, the X post describing the stunt had garnered over 21,000 likes.Citar"Here we have a remarkable specimen of Homo sapiens distinguished by his silver circular spectacles and a mane of tousled curly locks," the false Attenborough says in the demo as Holtz looks on with a grin. "He's wearing what appears to be a blue fabric covering, which can only be assumed to be part of his mating display.""Look closely at the subtle arch of his eyebrow," it continues, as if narrating a BBC wildlife documentary. "It's as if he's in the midst of an intricate ritual of curiosity or skepticism. The backdrop suggests a sheltered habitat, possibly a communal feeding area or watering hole."Replicate | David Attenborough is now narrating my lifeHow does it work? Every five seconds, a Python script called "narrator" takes a photo from Holtz's webcam and feeds it to GPT-4V—the version of OpenAI's language model that can process image inputs—via an API, which has a special prompt to make it create text in the style of Attenborough's narrations. Then it feeds that text into an ElevenLabs AI voice profile trained on audio samples of Attenborough's speech. Holtz provided the code (called "narrator") that pulls it all together on GitHub, and it requires API tokens for OpenAI and ElevenLabs that cost money to run.While some of these capabilities have been available separately for some time, developers have recently begun to experiment with combining these capabilities together thanks to API availability, which can create surprising demonstrations like this one.During the demo video, when Holtz holds up a cup and takes a drink, the fake Attenborough narrator says, "Ah, in its natural environment, we observe the sophisticated Homo sapiens engaging in the critical ritual of hydration. This male individual has selected a small cylindrical container, likely filled with life-sustaining H2O, and is tilting it expertly towards his intake orifice. Such grace, such poise."In a different demo posted on X by Pietro Schirano, you can hear the cloned voice of Steve Jobs critiquing designs created in Figma, a design app. Schirano used a similar technique, with an image being streamed to GPT-4V via API (which was prompted to reply in the style of Jobs), then fed into an ElevenLabs clone of Jobs' voice.We've previously covered voice cloning technology, which is fraught with ethical and legal concerns where the software creates convincing deepfakes of a person's voice, making them "say" things the real person never said. This has legal implications regarding a celebrity's publicity rights, and it has already been used to scam people by faking the voices of loved ones seeking money. ElevenLabs' terms of service prohibit people from making clones of other people's voices in a way that would violate "Intellectual Property Rights, publicity rights and Copyright," but it's a rule that can be difficult to enforce.For now, while some people expressed deep discomfort from someone imitating Attenborough's voice without permission, many others seem bemused by the demo. "Okay, I'm going to get David Attenborough to narrate videos of my baby learning how to eat broccoli," [ur=https://x.com/JeremyNguyenPhD/status/1724837709158731887?s=20l]quipped[/url] Jeremy Nguyen in an X reply.
"Here we have a remarkable specimen of Homo sapiens distinguished by his silver circular spectacles and a mane of tousled curly locks," the false Attenborough says in the demo as Holtz looks on with a grin. "He's wearing what appears to be a blue fabric covering, which can only be assumed to be part of his mating display.""Look closely at the subtle arch of his eyebrow," it continues, as if narrating a BBC wildlife documentary. "It's as if he's in the midst of an intricate ritual of curiosity or skepticism. The backdrop suggests a sheltered habitat, possibly a communal feeding area or watering hole."
Dot CSV | SAM ALTMAN despedido de OPENAI - ¿Será el fin de ChatGPT?Pues vaya análisis.Saludos.
A New Way To Predict Ship-Killing Rogue WavesPosted by msmash on Friday November 24, 2023 @12:00PM from the closer-look dept.AI models can find patterns and make predictions, but their reasoning is often inscrutable. This "black box" issue makes AI less reliable and less scientifically useful. However, a team led by Dion Hafner (a computer scientist at the University of Copenhagen) devised a clever neural network to predict rogue waves. By restricting inputs to meaningful wave measurements and tracing how they flowed through the network, the team extracted a simple five-part equation encapsulating the AI's logic. Economist adds:CitarTo generate a human-comprehensible equation, the researchers used a method inspired by natural selection in biology. They told a separate algorithm to come up with a slew of different equations using those five variables, with the aim of matching the neural network's output as closely as possible. The best equations were mixed and combined, and the process was repeated. The result, eventually, was an equation that was simple and almost as accurate as the neural network. Both predicted rogue waves better than existing models.The first part of the equation rediscovered a bit of existing theory: it is an approximation of a well-known equation in wave dynamics. Other parts included some terms that the researchers suspected might be involved in rogue-wave formation but are not in standard models. There were some puzzlers, too: the final bit of the equation includes a term that is inversely proportional to how spread out the energy of the waves is. Current human theories include a second variable that the machine did not replicate. One explanation is that the network was not trained on a wide enough selection of examples. Another is that the machine is right, and the second variable is not actually necessary.
To generate a human-comprehensible equation, the researchers used a method inspired by natural selection in biology. They told a separate algorithm to come up with a slew of different equations using those five variables, with the aim of matching the neural network's output as closely as possible. The best equations were mixed and combined, and the process was repeated. The result, eventually, was an equation that was simple and almost as accurate as the neural network. Both predicted rogue waves better than existing models.The first part of the equation rediscovered a bit of existing theory: it is an approximation of a well-known equation in wave dynamics. Other parts included some terms that the researchers suspected might be involved in rogue-wave formation but are not in standard models. There were some puzzlers, too: the final bit of the equation includes a term that is inversely proportional to how spread out the energy of the waves is. Current human theories include a second variable that the machine did not replicate. One explanation is that the network was not trained on a wide enough selection of examples. Another is that the machine is right, and the second variable is not actually necessary.
Nvidia CEO Huang Urges Faster AI DevelopmentPosted by msmash on Friday November 24, 2023 @09:00AM from the alternative-perspective dept.At a time when some are calling for a pause on the development of generative AI, Jensen Huang, founder and CEO of NVIDIA, has an argument for accelerating the work: AI advances are going to provide tools to better understand the technology and to make it safer, Huang said in a discussion with Goldman Sachs Asset Management. From a report:Citar"We need to accelerate the development of AI as fast as possible, and the reason for that is because safety requires technology," Huang said in an interview at The Forum with Sung Cho, co-head of Tech Investing for Fundamental Equity in GSAM.Consider how much safer today's passenger cars are compared with those of earlier generations, Huang suggested, because the technology has advanced. He cited as an example how OpenAI's ChatGPT uses reinforcement learning from human feedback (RLHF) to create guardrails that make its responses more relevant, accurate, and appropriate.The RLHF is itself an AI model that sits around the core AI model. Huang lists examples of other AI technologies that hold promise for making the models safer and more effective. These range from retrieval augmented generation, in which the model gets information from a defined knowledge base or set of documents, to physics-informed reinforcement learning, which grounds the model in physical principles and constraints. "We need a bunch more technology like that," Huang said.
"We need to accelerate the development of AI as fast as possible, and the reason for that is because safety requires technology," Huang said in an interview at The Forum with Sung Cho, co-head of Tech Investing for Fundamental Equity in GSAM.Consider how much safer today's passenger cars are compared with those of earlier generations, Huang suggested, because the technology has advanced. He cited as an example how OpenAI's ChatGPT uses reinforcement learning from human feedback (RLHF) to create guardrails that make its responses more relevant, accurate, and appropriate.The RLHF is itself an AI model that sits around the core AI model. Huang lists examples of other AI technologies that hold promise for making the models safer and more effective. These range from retrieval augmented generation, in which the model gets information from a defined knowledge base or set of documents, to physics-informed reinforcement learning, which grounds the model in physical principles and constraints. "We need a bunch more technology like that," Huang said.
Nvidia's Jensen Huang Says AGI Is 5 Years AwayPosted by BeauHD on Tuesday March 19, 2024 @08:45PM from the what-to-expect dept.Haje Jan Kamps writes via TechCrunch:CitarArtificial General Intelligence (AGI) -- often referred to as "strong AI," "full AI," "human-level AI" or "general intelligent action" -- represents a significant future leap in the field of artificial intelligence. Unlike narrow AI, which is tailored for specific tasks (such as detecting product flaws, summarize the news, or build you a website), AGI will be able to perform a broad spectrum of cognitive tasks at or above human levels. Addressing the press this week at Nvidia's annual GTC developer conference, CEO Jensen Huang appeared to be getting really bored of discussing the subject -- not least because he finds himself misquoted a lot, he says. The frequency of the question makes sense: The concept raises existential questions about humanity's role in and control of a future where machines can outthink, outlearn and outperform humans in virtually every domain. The core of this concern lies in the unpredictability of AGI's decision-making processes and objectives, which might not align with human values or priorities (a concept explored in depth in science fiction since at least the 1940s). There's concern that once AGI reaches a certain level of autonomy and capability, it might become impossible to contain or control, leading to scenarios where its actions cannot be predicted or reversed.When sensationalist press asks for a timeframe, it is often baiting AI professionals into putting a timeline on the end of humanity -- or at least the current status quo. Needless to say, AI CEOs aren't always eager to tackle the subject. Predicting when we will see a passable AGI depends on how you define AGI, Huang argues, and draws a couple of parallels: Even with the complications of time-zones, you know when new year happens and 2025 rolls around. If you're driving to the San Jose Convention Center (where this year's GTC conference is being held), you generally know you've arrived when you can see the enormous GTC banners. The crucial point is that we can agree on how to measure that you've arrived, whether temporally or geospatially, where you were hoping to go. "If we specified AGI to be something very specific, a set of tests where a software program can do very well -- or maybe 8% better than most people -- I believe we will get there within 5 years," Huang explains. He suggests that the tests could be a legal bar exam, logic tests, economic tests or perhaps the ability to pass a pre-med exam. Unless the questioner is able to be very specific about what AGI means in the context of the question, he's not willing to make a prediction. Fair enough.
Artificial General Intelligence (AGI) -- often referred to as "strong AI," "full AI," "human-level AI" or "general intelligent action" -- represents a significant future leap in the field of artificial intelligence. Unlike narrow AI, which is tailored for specific tasks (such as detecting product flaws, summarize the news, or build you a website), AGI will be able to perform a broad spectrum of cognitive tasks at or above human levels. Addressing the press this week at Nvidia's annual GTC developer conference, CEO Jensen Huang appeared to be getting really bored of discussing the subject -- not least because he finds himself misquoted a lot, he says. The frequency of the question makes sense: The concept raises existential questions about humanity's role in and control of a future where machines can outthink, outlearn and outperform humans in virtually every domain. The core of this concern lies in the unpredictability of AGI's decision-making processes and objectives, which might not align with human values or priorities (a concept explored in depth in science fiction since at least the 1940s). There's concern that once AGI reaches a certain level of autonomy and capability, it might become impossible to contain or control, leading to scenarios where its actions cannot be predicted or reversed.When sensationalist press asks for a timeframe, it is often baiting AI professionals into putting a timeline on the end of humanity -- or at least the current status quo. Needless to say, AI CEOs aren't always eager to tackle the subject. Predicting when we will see a passable AGI depends on how you define AGI, Huang argues, and draws a couple of parallels: Even with the complications of time-zones, you know when new year happens and 2025 rolls around. If you're driving to the San Jose Convention Center (where this year's GTC conference is being held), you generally know you've arrived when you can see the enormous GTC banners. The crucial point is that we can agree on how to measure that you've arrived, whether temporally or geospatially, where you were hoping to go. "If we specified AGI to be something very specific, a set of tests where a software program can do very well -- or maybe 8% better than most people -- I believe we will get there within 5 years," Huang explains. He suggests that the tests could be a legal bar exam, logic tests, economic tests or perhaps the ability to pass a pre-med exam. Unless the questioner is able to be very specific about what AGI means in the context of the question, he's not willing to make a prediction. Fair enough.
Cita de: Maloserá en Marzo 19, 2024, 11:15:17 amEstoy distraído ultimamente y os leo espasmódicamente. No tengo mucho que aportar. He encontrado este paper sobre rentismo, no lo he leído pero tiene buena pinta Saludos a todoshttps://academic.oup.com/cje/article/47/3/507/7160981Interesante el documento; muy en la linea de la temática del foro. Además escrito por Mariana Mazzucato, una persona mediática pero que aquí en España nuna se la nombra por ningún ejperto del plantel de ejpertos que usan en los medios.Después de leerlo (solo son 30 páginas) lo he subido a sharly:Chat with documentsSummarize long documents and simplify complex PDFs with AI Chat.https://sharly.ai/y le hecho algunas preguntas:Citar¿como influyen las rentas inmobiliarias en la desigualdad social?Las rentas inmobiliarias pueden tener un impacto significativo en la desigualdad social. En primer lugar, el aumento de los precios de la vivienda y los alquileres puede dificultar el acceso a la vivienda para aquellos con ingresos más bajos, lo que contribuye a la desigualdad en términos de calidad de vida y oportunidades.Además, las rentas inmobiliarias pueden generar beneficios desproporcionados para los propietarios de viviendas y los inversores en bienes raíces, lo que aumenta la brecha de riqueza entre aquellos que poseen propiedades y aquellos que no. Esto puede llevar a una mayor concentración de la riqueza en manos de unos pocos, mientras que otros luchan por mantenerse a flote.Asimismo, las rentas inmobiliarias pueden tener efectos indirectos en la economía en general. Por ejemplo, los altos costos de vivienda pueden llevar a un aumento en los gastos de vivienda de las personas, lo que reduce su capacidad de gastar en otros bienes y servicios. Esto puede afectar negativamente a los negocios locales y contribuir a la desigualdad económica.En resumen, las rentas inmobiliarias pueden contribuir a la desigualdad social al dificultar el acceso a la vivienda, aumentar la brecha de riqueza y afectar la economía en general. Es importante considerar políticas y medidas que aborden estos problemas y promuevan una distribución más equitativa de los beneficios generados por el sector inmobiliario....y leyendo el documento, el autor da muchos más argumentos sobre ese tema, además que los va relacionando con otros elementos a lo largo del documento.Aún así, nunca había usado un chat de estos y me ha sorprendido bastante. No sustituye ni de lejos a leerse el documento por uno mismo, porque seguir la linea argumental del autor a lo largo del documento, es lo que da la idea de lo que quiere transmitir. Pero me quito el gorro por lo bien que funciona.Curioso que el documento está en inglés, y las respuestas las da en español. Sorprendente.
Estoy distraído ultimamente y os leo espasmódicamente. No tengo mucho que aportar. He encontrado este paper sobre rentismo, no lo he leído pero tiene buena pinta Saludos a todoshttps://academic.oup.com/cje/article/47/3/507/7160981
¿como influyen las rentas inmobiliarias en la desigualdad social?Las rentas inmobiliarias pueden tener un impacto significativo en la desigualdad social. En primer lugar, el aumento de los precios de la vivienda y los alquileres puede dificultar el acceso a la vivienda para aquellos con ingresos más bajos, lo que contribuye a la desigualdad en términos de calidad de vida y oportunidades.Además, las rentas inmobiliarias pueden generar beneficios desproporcionados para los propietarios de viviendas y los inversores en bienes raíces, lo que aumenta la brecha de riqueza entre aquellos que poseen propiedades y aquellos que no. Esto puede llevar a una mayor concentración de la riqueza en manos de unos pocos, mientras que otros luchan por mantenerse a flote.Asimismo, las rentas inmobiliarias pueden tener efectos indirectos en la economía en general. Por ejemplo, los altos costos de vivienda pueden llevar a un aumento en los gastos de vivienda de las personas, lo que reduce su capacidad de gastar en otros bienes y servicios. Esto puede afectar negativamente a los negocios locales y contribuir a la desigualdad económica.En resumen, las rentas inmobiliarias pueden contribuir a la desigualdad social al dificultar el acceso a la vivienda, aumentar la brecha de riqueza y afectar la economía en general. Es importante considerar políticas y medidas que aborden estos problemas y promuevan una distribución más equitativa de los beneficios generados por el sector inmobiliario.
OpenAI's Long-Term AI Risk Team Has DisbandedPosted by msmash on Friday May 17, 2024 @11:25AM from the change-in-priorities dept.An anonymous reader shares a report:CitarIn July last year, OpenAI announced the formation of a new research team that would prepare for the advent of supersmart artificial intelligence capable of outwitting and overpowering its creators. Ilya Sutskever, OpenAI's chief scientist and one of the company's cofounders, was named as the colead of this new team. OpenAI said the team would receive 20 percent of its computing power. Now OpenAI's "superalignment team" is no more, the company confirms. That comes after the departures of several researchers involved, Tuesday's news that Sutskever was leaving the company, and the resignation of the team's other colead. The group's work will be absorbed into OpenAI's other research efforts.Sutskever's departure made headlines because although he'd helped CEO Sam Altman start OpenAI in 2015 and set the direction of the research that led to ChatGPT, he was also one of the four board members who fired Altman in November. Altman was restored as CEO five chaotic days later after a mass revolt by OpenAI staff and the brokering of a deal in which Sutskever and two other company directors left the board. Hours after Sutskever's departure was announced on Tuesday, Jan Leike, the former DeepMind researcher who was the superalignment team's other colead, posted on X that he had resigned.
In July last year, OpenAI announced the formation of a new research team that would prepare for the advent of supersmart artificial intelligence capable of outwitting and overpowering its creators. Ilya Sutskever, OpenAI's chief scientist and one of the company's cofounders, was named as the colead of this new team. OpenAI said the team would receive 20 percent of its computing power. Now OpenAI's "superalignment team" is no more, the company confirms. That comes after the departures of several researchers involved, Tuesday's news that Sutskever was leaving the company, and the resignation of the team's other colead. The group's work will be absorbed into OpenAI's other research efforts.Sutskever's departure made headlines because although he'd helped CEO Sam Altman start OpenAI in 2015 and set the direction of the research that led to ChatGPT, he was also one of the four board members who fired Altman in November. Altman was restored as CEO five chaotic days later after a mass revolt by OpenAI staff and the brokering of a deal in which Sutskever and two other company directors left the board. Hours after Sutskever's departure was announced on Tuesday, Jan Leike, the former DeepMind researcher who was the superalignment team's other colead, posted on X that he had resigned.
CitarOpenAI's Long-Term AI Risk Team Has DisbandedPosted by msmash on Friday May 17, 2024 @11:25AM from the change-in-priorities dept.An anonymous reader shares a report:CitarIn July last year, OpenAI announced the formation of a new research team that would prepare for the advent of supersmart artificial intelligence capable of outwitting and overpowering its creators. Ilya Sutskever, OpenAI's chief scientist and one of the company's cofounders, was named as the colead of this new team. OpenAI said the team would receive 20 percent of its computing power. Now OpenAI's "superalignment team" is no more, the company confirms. That comes after the departures of several researchers involved, Tuesday's news that Sutskever was leaving the company, and the resignation of the team's other colead. The group's work will be absorbed into OpenAI's other research efforts.Sutskever's departure made headlines because although he'd helped CEO Sam Altman start OpenAI in 2015 and set the direction of the research that led to ChatGPT, he was also one of the four board members who fired Altman in November. Altman was restored as CEO five chaotic days later after a mass revolt by OpenAI staff and the brokering of a deal in which Sutskever and two other company directors left the board. Hours after Sutskever's departure was announced on Tuesday, Jan Leike, the former DeepMind researcher who was the superalignment team's other colead, posted on X that he had resigned.Saludos.